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Abstract

A new combination of vortex-in-cell and parallel fast multipole methods is presented which allows to efficiently simu-
late, in parallel, unbounded and half-unbounded vortical flows (flows with one flat wall). In the classical vortex-in-cell
(VIC) method, the grid used to solve the Poisson equation is typically taken much larger than the vorticity field region,
so as to be able to impose suitable far-field boundary conditions and thus approximate the truly unbounded (or half-
unbounded) flow; an alternative is to assume periodicity. This approach leads to a solution that depends on the global grid
size and, for large problems, to unmanageable memory and CPU requirements. The idea exploited here is to work on a
domain that contains tightly the vorticity field and that can be decomposed in several subdomains on which the exact
boundary conditions are obtained using the parallel fast multipole (PFM) method. This amounts to solving a 3-D Poisson
equation without requiring any iteration between the subdomains (e.g., no Schwarz iteration required): this is so because
the PFM method has a global view of the entire vorticity field and satisfies the far-field condition. The solution obtained by
this VIC-PFM combination then corresponds to the simulation of a truly unbounded (or half-unbounded) flow. It requires
far less memory and leads to a far better computational efficiency compared to simulations done using either (1) the VIC
method alone, or (2) the vortex particle method with PFM solver alone. 3-D unbounded flow validation results are pre-
sented: instability, non-linear evolution and decay of a vortex ring (first at a moderate Reynolds number using the sequen-
tial version of the method, then at a high Reynolds number using the parallel version); instability and non-linear evolution
of a two vortex system in ground effect. Finally, a space-developing simulation of an aircraft vortex wake in ground effect is
also presented.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The method developed here is a combination of the parallel fast multipole (PFM) method and of the vor-
tex-in-cell (VIC) method that allows to efficiently simulate, in 2-D and in 3-D, incompressible unsteady flows
that are unbounded or half-unbounded.

Vortex particle methods are based on the vorticity—velocity formulation of the Navier-Stokes equations
and on the fact that, for incompressible flows, it is sufficient to follow the evolution of the vorticity field,
the velocity field being recovered from the vorticity. See, e.g., Cottet and Koumoutsakos [9], Winckelmans
[40] for global reviews. The Lagrangian treatment of the convection term leads to methods with negligible dis-
persion error. It also eliminates the CFL stability constraint; however, there is still an accuracy constraint that
limits the relative rotation of vortex particles (|w|Af must remain moderate). Vortex methods also have good
energy conservation properties. These two qualities (negligible dissipation and negligible dispersion) make
vortex methods suitable candidates for direct numerical simulation (DNS) and/or large-eddy simulation
(LES) of complex convection dominated flows.

When using the vorticity—velocity formulation of the incompressible Navier—Stokes equations, one needs to
solve a Poisson equation for the streamfunction. Two different approaches are commonly used:

e Lagrangian vortex method. the Poisson equation is solved using the unbounded Green’s function
approach (Biot-Savart). The unbounded domain is thus taken into account implicitly. Thanks to PFM
methods [13,6], one is able to obtain, both in 2-D and in 3-D, the streamfunction (and thus the velocity,
its gradient, etc.) with an O(NlogN) computational cost, where N is the number of particles. Those
approaches make use of outer multipole expansions (i.e., expansions representing the field outside of a
ball). There are also implementations that make use of both inner and outer expansions, allowing to
reduce the cost to O(N). Our parallel 3-D implementation is based on an oct-tree and outer expansions;
it also uses active error control based on tight error bounds, allowing to minimize the computational cost
required to obtain the field with an error that is uniformly bounded in space at a prescribed level (the
error tolerance being an input to the code): see [32,33,27,28]. Another parallel 3-D implementation is that
by Krasny et al. [19].

e Vortex-in-cell method: in such hybrid Lagrangian—Eulerian methods, the Poisson equation is solved on a
grid, see [7,11,12,25]. This is done using fast Poisson solvers. Those also have a computational cost
O(MlogM), where M is the number of grid points, but are considerably faster than the PFM methods.
However, boundary conditions are required. Hence, for unbounded (or half-unbounded) flows prob-
lems, the grid must be taken much larger than the vorticity field region, so that approximate far-field
boundary conditions can be used. In some cases, one assumes periodicity: this too calls for a large grid.
In both cases, the obtained solution is dependent on the global grid size, and so are the computational
memory and cost requirements. In other implementations, a slightly modified Schwarz alternating algo-
rithm can be used: an iterative method to obtain consistent boundary conditions on each subdomains
and that avoids solving a boundary integral problem while still retaining good convergence properties
[3,25]. Nevertheless, it results that the VIC approach used “alone” is not really appropriate for
unbounded flows, as it does not retain the ability of vortex methods to exactly satisfy the far-field
condition.

The present “VIC-PFM” method constitutes a combination of these two approaches. It uses the “smallest”
possible domain (i.e., the “smallest” grid): one that tightly contains the vorticity region. In parallel, this
domain is further decomposed by splitting it into several subdomains, with one subdomain per processor.
The boundary conditions required on the sides of these subgrids are obtained “‘exactly” by using the PFM
method, which has a global view of the entire vorticity field. The Poisson equation is then solved on each sub-
grid, i.e., locally on each processor, and the combination of all subgrid solutions still provides the solution of a
truly unbounded flow. Moreover, from a computational point of view, the efficiency of this method is better
than that obtained using a pure PFM method, while benefiting from the powerful parallelization of the fast
multipole algorithm. As the grid can be taken compact, it is also better than that obtained using a pure VIC
method (when the grid is taken large enough to properly approximate an unbounded domain). The present
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VIC-PFM methodology is here also extended to unbounded flows with one periodic direction (e.g., useful for
simulations of aircraft vortex wakes) and also to half-unbounded flows: those with a flat wall (e.g., simulations
of aircraft wakes vortices in ground effect). A last variant, used to perform space-developing simulations (thus,
simulations with inflow and outflow boundary conditions), is also implemented and is here illustrated on sim-
ulating a space-developing aircraft vortex wake in ground effect.

2. The VIC-PFM method

The VIC-PFM approach will be explained for the 3-D case only; the 2-D method can easily be deduced
from it (and was also implemented). In this section, we first present the basic equations. Then, we explain
the VIC-PFM methodology by presenting a global time step. Finally, we describe some essential ““tools” used
to ensure the method’s accuracy/efficiency or required for some specific applications.

2.1. Basic equations

Let us first recall the vorticity—velocity formulation for the incompressible Navier—Stokes equations:

D

§=V~(uw)+vvzw (1)
where D/Dr is the convective derivation, u(x,?) is the velocity field, V - (uw) is the conservative form of
(Vu) - @, v is the kinematic viscosity, and @ =V x u is the vorticity field. In 2-D, o = we, and there is no
stretching term (V - (uw) = 0). The flow being incompressible, the velocity can be expressed as

u=Vxy+U, (2)
where ¥ is the associated streamfunction, related to w by the Poisson equation,
VY =-o (3)

and U, a freestream velocity, added when performing space-developing simulations (see Section 2.7.3).

In vortex methods, the vorticity field is discretized using a set of N Lagrangian particles, see Leonard [20]
and global presentations in Leonard [21], Cottet and Koumoutsakos [9], and Winckelmans [40]. Here, we use
the Gaussian function as regularization, so that the regularized particle vorticity field is

w3 = Y ﬁ exp (—% u) % 4)

where x,, is the position of particle p and o, = [ @ dx = a)phf’7 is the particle’s strength (with /4, the local grid
size). The vector streamfunction, ¥, on the sides of the grid of each subdomain is thus obtained using the
PFM method. To ensure a good agreement between the grid solver and the PFM solver, the core size g, of
the regularized particles has to be chosen such that y, = ¥, (where ¥, is the streamfunction obtained using
the grid Poisson solver). In Fig. 1, we show the value of ;, obtained with the grid solver for a unit vorticity
strength o placed at x = 0. In the multipole method, for the direct interactions, the streamfunction is obtained
as

b S, 5

p

We can then determine the proper g, that leads to the same regularization as the “intrinsic” regularization of
the Poisson grid solver, which is due to the finite differences schemes used in those solvers. With the FishPack
Poisson solver used here, we find g, = 0.251/,,. The resulting ¥, is shown in Fig. 1. We observe that the two
curves, ¥, and ¥, are indeed in good agreement, which ensures the continuity of the streamfunction obtained
with the Lagrangian field (i.e., the particles used in the PFM method) and with the Eulerian field (i.e., the field
as seen by the grid used in the VIC method).
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Fig. 1. The streamfunction obtained for a unit vorticity strength o, placed at x = 0: ;, obtained using the grid solver (dot) and v,
obtained using the PFM method (solid).

2.2. Global time step

We now explain the VIC-PFM methodology. We consider the case with uniform grid (of grid size /); the
case with non-uniform grid was also considered but the results are not presented here. The initial information
is a set of particles of position x,, and strength a, which represents the complete vorticity field. Depending on
the number of processors p used, the spatial domain defined by the particles, chosen so that it tightly includes
the vorticity field, is split equally into several intervals in each direction (p, intervals in the x-direction and
equivalently, p, and p. for the others two directions) so that p, x p, x p. = p subdomains are created and
allotted to the p processors. This is illustrated in Fig. 2, using a 2-D example to make it easier. For interpo-
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Fig. 2. Example of domain decomposition for a vorticity field shared between four processors. For proper interpolation reasons, an
overlapping between the subdomains is required.
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lation reasons that will be explained later, an overlapping between the subdomains is required (minimum 2/).
The particles are then distributed among the processors (i.e., the subdomains) depending on their positions.
To prevent useless communications, some particles are repeated on several processors: we call them the “phan-
tom” particles, in opposition to the “real” particles that are only present in one processor. Fig. 3 illustrates this
distribution. We observe that the particles located inside the overlapping region are repeated between the dif-
ferent subdomains. It is also the case for the particles located up to a distance of 2/ outside the grid limits. We
will explain below, in the detailed time step explanation, how these ‘“phantom” particles are useful during the
interpolation/redistribution steps.

We also recall that, in Lagrangian methods, particle redistribution is an essential operation to ensure a
good representation of the vorticity field and thus maintain the accuracy of the simulation as time proceeds.
A particle redistribution is thus done every few time steps (e.g., typically 5, see [27,28]). When it is time to do a
particle redistribution before the time step, one first creates a new set of particles on a regular lattice: here
based on the VIC grid. This is done using the M, high order interpolation/redistribution scheme (see Section
2.3), which preserves the moments of order zero, one and two of the vorticity field (corresponding, respec-
tively, to the total vorticity Q = [wdx, the linear impulse I =1 [x x @wdx, and the angular impulse
A=—-1T |x| wdx). In case no particle redistribution is done before the time step, the particles are not on
a regular lattice, yet they are not much distorted.

In ecither case, at the beginning of the time step, each processor has a set of particles (“real” and “phan-
tom”) of position x,, and strength a,. The time step in each subdomain is then as follows:

processor 1

particles

cscococecesnnocoon

scoooococecoononoooos

ssoa

coocoscesoonososessoe

esooscenonnnnooseceone
cosocacccacense csecese

sseceoscscecasa

processor 4

Fig. 3. Example of distribution of vortex particles between the processors. The “real” particles (@) are those which represent the vorticity
field in the physical part of each subdomain. Some of these particles, the “phantom” particles (O), are repeated between the processors.
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(1) Create the subgrid used to solve the Poisson equation (resulting from the spatial subdivision of the glo-
bal vorticity field). It is chosen so that it tightly includes the vorticity field defined by the ““real” particles
domain. In practice, as shown in Fig. 4, a “buffer” zone of a few 4 (typically 54) is added in the “open-
domain” directions to ensure that the VIC grid is not changed too often. As already mentioned, an
“overlapping” zone is also added on all “subdomain interfaces”.

(2) Interpolate the particle’s strengths onto the grid, to obtain the vorticity field  on the grid. The M}, high
order interpolation scheme is used (see Section 2.3). As the stencil width of this scheme is 4/, one notes
the utility of the “phantom” particles, located in the region 2/ outside of the grid limits, to properly
obtain the interpolated vorticity field everywhere on the grid.

(3) Obtain the Dirichlet boundary conditions for ¥ on the sides of the VIC grid, using the PFM method. The
oct-tree and outer multipole expansions are computed using the set of grid points (i.e., the grid’s strength
previously interpolated) located in the “real” subdomain of each processor.

(4) Solve, locally on each processor, the Poisson equation V2 = —w on the VIC grid using a fast Poisson
solver (e.g., public domain libraries, such as Fishpack [1]and Mudpack [2]). The solver uses the grid with
Y provided on the boundaries and with — known inside. It returns the y field on the grid. In 3-D, the
Poisson solver is called three times (as @ and ¥ are vector fields).

(5) Evaluate the velocity field, u, from y, using finite differences (here second order, one-sided on the bound-
aries and centered elsewhere).

(6) Evaluate the evolution (without convection) of the vorticity field on the grid, dw/dt = V,, - (uw) + vVﬁw:
e The diffusion term, vV}, is here evaluated using a second order scheme using the 27 points of a cube

(in 2-D, the 9 points of a square), see Section 2.6. These ““isotropic” schemes have the advantage that
their truncation error is independent of the local grid orientation (as opposed to the classical “cross”
schemes).

e The stretching term, V,, - (uw), is also evaluated on the grid using finite differences (also second order,
one-sided on the boundaries and centered elsewhere). It is interesting to note that using the conser-
vative form of the stretching term (V - (uw)) leads to better results (i.e., moments, energy and zero vor-
ticity divergence conservation) than using the non-conservative form ((Vu) - o).

At this stage, the fields u and da/ds = h*dw/dr are known at each grid point. It remains to “send back”

the information (i.e., u and da/dr) to the “real” particles and update their position and strength. The

“phantom” particles are here deleted as they are no longer useful.

VIC grid

“buffer” zone /

N—

000000 CO0O000000000000
00O000OODODCOOOODOO0O000O0000

pping” zone

codooessse
codocesse
cojdoocesee

o

Fig. 4. Tllustration of the Lagrangian and Eulerian “‘configuration” inside a processor.
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(7) Update, still locally on each processor, the “real” particles’ position and strength:

e In the case particle redistribution has been done prior to the time step, the particles are aligned with
the grid. So, no interpolation is needed: u and da/ds are simply copied from the grid points to the cor-
responding particles. We then use the second order Runge—Kutta scheme (i.e., Euler as first step pre-
dictor and trapezoidal rule as second step corrector), as we do not have the information at the
previous time step. The Euler predictor is

de,
Ly — At — 7
a[’ “ + dt (x727) ( )

The trapezoidal rule corrector first requires redoing steps (1)-(6). Moreover, as the particles are no
longer aligned with the grid, the grid fields u and dw/d¢ are interpolated from the grid to the particles
(using again M}). We see here the interest of the minimum 2/ overlapping zone that permits to cor-
rectly interpolate the information from the grid to the particles located at the border of the ““real” sub-
domain. After that, the correction step is as follows:

Xt = X S A (] ) + Byl ) (8)
da da

oot = o +3 At — — (9)
dt x)l an) dt (er»l.>.<7 1”+1'*)

e In the case particle redistribution has not been done prior to the time step, u and dw/dz are interpo-
lated from the grid, as for the second substep of the Runge—Kutta scheme. Now, as we have the infor-
mation from the previous time step, we use second order two-step schemes. For da/dz, we use Adams-
Bashforth. For particle convection, we use Leap-Frog:

X =x07 4 2Am,| (10)
(xp.05)
1 da da
ke At| 32 -z 11
% %t 2 ( dr dr ) (1)
(x5.25) (xa=1on=1)

(8) Finally, the particles are distributed among the processors according to their new position. If the vortic-
ity field has grown and/or moved, the computational VIC domain and its subdomains limits are
redefined.

It is interesting to note that communications are needed only twice per time step: when the boundary con-
ditions are determined using the PFM method (3) and during the particles distribution (8). It leads to a good
speedup, in fact nearly the same as the speedup of the PFM method used alone but, as we will see, with a better
global computational time.

We should also mention that, in order to limit the number of particles, a “cut” is done every time step. This
operation consists in removing the particles having a strength weaker than a fraction of the maximum strength
present in the flow. In the case where strong stretching occurs, the maximum strength can rapidly grows up
(and thus leading to a too important cut). In that case, the maximum strength taken into account is the max-
imum strength of the initial condition. Typically, the limit of the cut is taken as 10~ °||a||max. TO ensure the
total vorticity conservation, the sum of the “cut” vorticity is uniformly distributed to the remaining particles.

2.3. Particle redistributionlinterpolation scheme
As already mentioned, Lagrangian methods require particle redistribution, see [9,40]. It is an essential oper-

ation to maintain a good overlap of the particle regularization functions, and thus maintain a good represen-
tation of the vorticity field. In the VIC-PFM method, as we continuously go between the particles and the
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grid, we also need a good quality scheme to bring the particles information to the grid, and the grid informa-
tion to the particles. The scheme chosen is the M7 scheme [23] (the A3 scheme was also studied but, in 3-D,
some noise was noticed, see also [9]). In 1-D, the M, scheme is as follows:

12-5x7+3Xx7) ifo<x<l1
My(X) =411 -x)2-X) if 1 <X <2
0 otherwise

where X is the distance between the particle and the grid node, normalized by /. The fraction of the particle
information which is attributed to the grid node (or conversely) is given by M (X). In 2-D and 3-D, one uses
tensor products.

The M), scheme is continuous and so is its first derivative. It is a second order scheme: it conserves €, I and
A. Of course, the use of such scheme introduces some dissipation. One can show that, on average, it acts as a
hyper-viscosity. For a //2 shift between particle positions and grid (which represents the worst situation), it
corresponds to a hyper-viscosity operator discretized to second order and with effective v?Ar equal to 34%/
128. Considering all possible shifts statistically, the net hyper-viscosity obtained is only a fraction of that.

2.4. Projection scheme used to maintain zero vorticity divergence

In 3-D, vortex particle methods do not guarantee that the divergence of the vorticity field remains zero in
long-time simulations and/or in under-resolved simulations. In the VIC method (thus also in the VIC-PFM
method), a good way to prevent any possible bad behavior consists in regularly re-projecting the vorticity field
onto a divergence free basis [12,29]:

" =w—V,F (12)
where F is obtained by solving
ViF=V, o (13)

on the grid using, again, the efficient Poisson solver, with Dirichlet boundary condition F = 0. This operation
is done as soon as the vorticity divergence V,, - o is seen to exceed a prescribed value, and when the particles
are on a regular lattice (i.e., after a redistribution). The new vorticity field is such that V,, - "% = 0 and the
particle strengths are reset to a™¥ = "V, This operation provides an efficient and essentially non-diffusive
“relaxation” scheme, which allows for simulations at high Reynolds number and for arbitrarily long times.

2.5. Subgrid-scale modelling for LES

The aim of this new VIC-PFM method is also to be able to simulate complex 3-D flows at high Reynolds
number, thus also using Large-Eddy Simulation (LES) approaches. In this case, only the most energetic scales
are captured and the effect of the subgrid-scales (SGS) on the captured scales is modelled.

The capabilities of different SGS models for LES, here implemented in the VIC method, have been
investigated in [8,10,15-17,37,39]. Their applicability to the simulation of decaying homogeneous isotropic
turbulence (HIT) was also tested. In [8], various SGS models were tested and compared on a more com-
plex and transitional flow: the multiscale dynamics developing in a counter-rotating four-vortex system
that evolves from a simple state to a turbulent state. Here, we use a simplified version of the regularized
variational multiscale model (here called RVM), where the diffusion, using an effective eddy viscosity Vg,
operates solely on the high frequency part of the LES vorticity field. In the vorticity—velocity formulation,
this gives:

Do

e V- (uo) + W0 + V- (v (V' + (Vo')")) (14)

with @° the “small-scale” vorticity field and vy, = C AZ(ZS,,S,,)I/ % the subgrid viscosity. The LES cut-off
length A is taken equal to the grid size /. The coefficients C are taken from [8]. S;; is the strain rate tensor:
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S = % (g, +g;;) with g;; = Ou,/dx;. The rhs of Eq. (14) is discretized as presented in Section 2.6. Here the small-
scale fields are obtained using a compact (stencil 3) tensor-product explicit discrete filter which is iterated n
times to produce an order 2z filter, see [17] for more details, and also [16,39].

In some simulations, done prior to the RVM model, we also performed LES using a simple “hyper-viscos-
ity” SGS dissipation model. It was also first chosen for its simplicity of implementation and its computational
efficiency. The LES equations are then taken as

D
—w:V~(uw)+vV2w—

o (Vo (15)

C
Ty
with T a global time scale and C a coefficient. The (4 V,ZT)2 operator is evaluated by applying twice the discrete
Laplacian of Section 2.6.

The global and spectral behavior of these models, as well as others, are discussed in detail in [17]. The pres-
ent brief presentation is sufficient for the examples of VIC-PFM applications presented here.

2.6. Laplacian schemes that are less sensitive to the grid orientation
We here present the 2-D and 3-D “isotropic” Laplacian schemes for which the performance is less depen-
dant of the local grid orientation than the classical “cross” scheme. They were designed so that the truncation

error is itself a Laplacian: see Fig. 5 for the coefficients. It is easily verified, using Taylor series, that we then
obtain

(V30), 4 = (v2 (w + gv2w> ) » + O(h*) (16)

The leading truncation error term is thus (/%/12) (V4w),~z,~,k which is not sensitive to the orientation of the grid
with respect to the solution VZw. This is not the case when using the usual cross scheme.

1 a b a=1/6
0] @ @ )
1 -4 1 b Cc=-20/6 b=4/6
G ® © —
(ij) (i)
1 a b a
O € )
a b a=2/30
)
1 b c b
® ®
1 a b a
b c b=1/30

S
53
®&
)
oy
A
S
o

Fig. 5. Illustration of 2-D and 3-D second order Laplacian schemes: the “cross” schemes (left), and the “isotropic” schemes (right).
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For LES, the RVM model (rhs of Eq. (14)) is programmed as follows:

2 [0 +Vion) 1 18
2 Sgs s s\T i+1,j+1,k+1 ijk s s
WV - (PE(Vie® + (Vie')')) = 55 s 2 el CHRRPIEL G s ool T+l

(17)

2.7. Beyond purely open-domain flows

There is a large class of purely open-domain flows which can be solved efficiently using the VIC-PFM
method as such. We here describe how the method can be extended to further address problems with one peri-
odic direction, problems bounded by a ground, or problems evolving jointly in space and time (space-devel-
oping flows).

2.7.1. Case of flows with one periodic direction

As we will illustrate in Section 4.2 using an aircraft vortex wake simulation, the VIC-PFM method is also
implemented with one periodic direction. This allows to determine the y field on the four faces of the grid
corresponding to the unbounded directions.

When the code is used on a single processor or when the domain is not split in the periodic direction,
the Poisson solver used (here FishPack [1]) is able to take into account one direction with periodic con-
dition and the two others with Dirichlet conditions. A fast and optimal way to determine the ¥ field is
illustrated in Fig. 6. To determine the ¥ field at a point P, one has to compute the influence of the
main box Q (i.e., the computational domain) and also of a series of equivalent boxes repeated period-
ically on both sides of the main box. We use the fact that the influence of the box €, , on the point P
is exactly the same as the influence of the main box  on the point P, , and conversely; and so on for
all points on both sides of Q. In this way, the y field at P can be computed by summing the contri-
butions of Q on P, Py, and P, . Only the multipole expansions for the computational domain @ are
required. Experience has shown that taking 50 image points on each side provides a well converged solu-
tion (i.e., a periodic solution). Compared with the non-periodic case, this periodic evaluation has an
additional computational cost of only about 25%. It is thus still very acceptable.

In the parallel case (i.e., when the domain Q is itself split in the periodic direction in various subdomains),
the Poisson equation is solved in two steps to ensure a perfect continuity between each subdomain:

VY =-o
lelll = _—o

Fig. 6. Illustration of the PFM method used to compute flows with one periodic direction. The y field at P is obtained by summing the
contributions of Q on the “shifted” points.
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where @ is the 2-D vorticity “base flow” field (i.e., the vorticity field space averaged in the periodic direction)
and @' = o — @. The base flow is first evaluated on the grid and is used to obtain the boundary conditions ¥
required to solve the first Poisson equation. Then, the o' field is evaluated and is used to obtain the related ¥’
boundary condition to solve the second Poisson equation. The total streamfunction y is then simply the sum
of Y and /'

In that way, we impose that each processor in the periodic direction “sees” exactly the same base flow field.
Without such procedure, we have noticed, in long-time simulations, the possible apparition of some small dis-
continuities at the subdomain interfaces. This behavior is due to the method used to compute the periodic
boundary conditions. Indeed, even if 50 image points are sufficient to have a well converged periodic solution,
it does not guarantee that the solution obtained on the ends of the periodic domain are exactly the same, the
multipole summations being not exactly equivalent. Imposing the same base flow field all over the periodic
domain avoids this problem and leads to a continuous periodic solution.

2.7.2. Case of flows in semi-open domains

As we have already mentioned, the PFM method is ideal to take into account boundary conditions for
open-domain flows, also those with one periodic direction. However, in some cases (e.g., flows bounded by
a flat ground, space-developing simulations with inflow and outflow, etc.), we also may want to impose:

o A no-through flow plane: this is used for bounded flows where we need to enforce the no-through flow con-
dition on a flat plane. For that, we symmetrize the vorticity field with respect to the plane (here written for a
x—y plane located at z = 0):

{ wn<x7ya _Z) = w,,(x,y,z)

wl(xayv _Z) = _wt(xayvz)
where w, and w, are respectively the normal component and the tangential components of the vorticity
field. This leads to u,(x,y,0)=0.

e A through flow plane: this is used for outflow where the tangential velocity is enforced to zero. This is also
done by enforcing symmetries on the flow with respect to a flat plane. It leads to the following constraints
on the vorticity field (also written for a x—y plane located at z = 0):

{ wl7(x7ya _Z) = —a),,(x,y,z)
wt(xaya _Z) = wt(x,y7z)

This leads to u,(x,y,0) =0.

In practice, we do not have to build the symmetrized vorticity field explicitly: when one evaluates, using the
PFM method, the  field at a point x (for the boundary conditions) induced by the vorticity field, one also
makes evaluations at symmetric locations and adds it to the first contribution, changing adequately the sign
of each component. In the case of more complex bodies than flat planes, boundary element methods are then
used (see [28,40]).

In order to simulate a flow above a viscous ground, we also need to enforce a zero slip velocity at the wall. It
is done in two steps. First, we use the “no-through flow” symmetrization to enforce a zero normal velocity
over the whole ground plane. After the Poisson equation has been solved, there is however still a spurious slip
velocity, ugip, at the wall. The second step is then to enforce the no-slip by emitting a vorticity flux at the wall:

oo Ay
Y
Since the ground is flat, there is no need to solve numerically a boundary integral equation for the panel
strengths: the solution is trivially obtained as Ay = 2ug;,. This flux must be emitted during a time Az, see
[9,18,28,40]. As this operation is done on the VIC grid, we have square panels of strength Ay and size
h x h. We here consider that the ground is located on the XY plane and that the panels diffuse towards the
positive Z direction. The “amount” o