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Abstract

A new combination of vortex-in-cell and parallel fast multipole methods is presented which allows to efficiently simu-
late, in parallel, unbounded and half-unbounded vortical flows (flows with one flat wall). In the classical vortex-in-cell
(VIC) method, the grid used to solve the Poisson equation is typically taken much larger than the vorticity field region,
so as to be able to impose suitable far-field boundary conditions and thus approximate the truly unbounded (or half-
unbounded) flow; an alternative is to assume periodicity. This approach leads to a solution that depends on the global grid
size and, for large problems, to unmanageable memory and CPU requirements. The idea exploited here is to work on a
domain that contains tightly the vorticity field and that can be decomposed in several subdomains on which the exact
boundary conditions are obtained using the parallel fast multipole (PFM) method. This amounts to solving a 3-D Poisson
equation without requiring any iteration between the subdomains (e.g., no Schwarz iteration required): this is so because
the PFM method has a global view of the entire vorticity field and satisfies the far-field condition. The solution obtained by
this VIC–PFM combination then corresponds to the simulation of a truly unbounded (or half-unbounded) flow. It requires
far less memory and leads to a far better computational efficiency compared to simulations done using either (1) the VIC
method alone, or (2) the vortex particle method with PFM solver alone. 3-D unbounded flow validation results are pre-
sented: instability, non-linear evolution and decay of a vortex ring (first at a moderate Reynolds number using the sequen-
tial version of the method, then at a high Reynolds number using the parallel version); instability and non-linear evolution
of a two vortex system in ground effect. Finally, a space-developing simulation of an aircraft vortex wake in ground effect is
also presented.
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1. Introduction

The method developed here is a combination of the parallel fast multipole (PFM) method and of the vor-
tex-in-cell (VIC) method that allows to efficiently simulate, in 2-D and in 3-D, incompressible unsteady flows
that are unbounded or half-unbounded.

Vortex particle methods are based on the vorticity–velocity formulation of the Navier–Stokes equations
and on the fact that, for incompressible flows, it is sufficient to follow the evolution of the vorticity field,
the velocity field being recovered from the vorticity. See, e.g., Cottet and Koumoutsakos [9], Winckelmans
[40] for global reviews. The Lagrangian treatment of the convection term leads to methods with negligible dis-
persion error. It also eliminates the CFL stability constraint; however, there is still an accuracy constraint that
limits the relative rotation of vortex particles (jxjDt must remain moderate). Vortex methods also have good
energy conservation properties. These two qualities (negligible dissipation and negligible dispersion) make
vortex methods suitable candidates for direct numerical simulation (DNS) and/or large-eddy simulation
(LES) of complex convection dominated flows.

When using the vorticity–velocity formulation of the incompressible Navier–Stokes equations, one needs to
solve a Poisson equation for the streamfunction. Two different approaches are commonly used:

� Lagrangian vortex method: the Poisson equation is solved using the unbounded Green’s function
approach (Biot-Savart). The unbounded domain is thus taken into account implicitly. Thanks to PFM
methods [13,6], one is able to obtain, both in 2-D and in 3-D, the streamfunction (and thus the velocity,
its gradient, etc.) with an OðN log NÞ computational cost, where N is the number of particles. Those
approaches make use of outer multipole expansions (i.e., expansions representing the field outside of a
ball). There are also implementations that make use of both inner and outer expansions, allowing to
reduce the cost to OðNÞ. Our parallel 3-D implementation is based on an oct-tree and outer expansions;
it also uses active error control based on tight error bounds, allowing to minimize the computational cost
required to obtain the field with an error that is uniformly bounded in space at a prescribed level (the
error tolerance being an input to the code): see [32,33,27,28]. Another parallel 3-D implementation is that
by Krasny et al. [19].
� Vortex-in-cell method: in such hybrid Lagrangian–Eulerian methods, the Poisson equation is solved on a

grid, see [7,11,12,25]. This is done using fast Poisson solvers. Those also have a computational cost
OðM log MÞ, where M is the number of grid points, but are considerably faster than the PFM methods.
However, boundary conditions are required. Hence, for unbounded (or half-unbounded) flows prob-
lems, the grid must be taken much larger than the vorticity field region, so that approximate far-field
boundary conditions can be used. In some cases, one assumes periodicity: this too calls for a large grid.
In both cases, the obtained solution is dependent on the global grid size, and so are the computational
memory and cost requirements. In other implementations, a slightly modified Schwarz alternating algo-
rithm can be used: an iterative method to obtain consistent boundary conditions on each subdomains
and that avoids solving a boundary integral problem while still retaining good convergence properties
[3,25]. Nevertheless, it results that the VIC approach used ‘‘alone” is not really appropriate for
unbounded flows, as it does not retain the ability of vortex methods to exactly satisfy the far-field
condition.

The present ‘‘VIC–PFM” method constitutes a combination of these two approaches. It uses the ‘‘smallest”
possible domain (i.e., the ‘‘smallest” grid): one that tightly contains the vorticity region. In parallel, this
domain is further decomposed by splitting it into several subdomains, with one subdomain per processor.
The boundary conditions required on the sides of these subgrids are obtained ‘‘exactly” by using the PFM
method, which has a global view of the entire vorticity field. The Poisson equation is then solved on each sub-
grid, i.e., locally on each processor, and the combination of all subgrid solutions still provides the solution of a
truly unbounded flow. Moreover, from a computational point of view, the efficiency of this method is better
than that obtained using a pure PFM method, while benefiting from the powerful parallelization of the fast
multipole algorithm. As the grid can be taken compact, it is also better than that obtained using a pure VIC
method (when the grid is taken large enough to properly approximate an unbounded domain). The present
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VIC–PFM methodology is here also extended to unbounded flows with one periodic direction (e.g., useful for
simulations of aircraft vortex wakes) and also to half-unbounded flows: those with a flat wall (e.g., simulations
of aircraft wakes vortices in ground effect). A last variant, used to perform space-developing simulations (thus,
simulations with inflow and outflow boundary conditions), is also implemented and is here illustrated on sim-
ulating a space-developing aircraft vortex wake in ground effect.

2. The VIC–PFM method

The VIC–PFM approach will be explained for the 3-D case only; the 2-D method can easily be deduced
from it (and was also implemented). In this section, we first present the basic equations. Then, we explain
the VIC–PFM methodology by presenting a global time step. Finally, we describe some essential ‘‘tools” used
to ensure the method’s accuracy/efficiency or required for some specific applications.

2.1. Basic equations

Let us first recall the vorticity–velocity formulation for the incompressible Navier–Stokes equations:
Dx

Dt
¼ r � ðuxÞ þ mr2x ð1Þ
where D/Dt is the convective derivation, u(x, t) is the velocity field, $ � (ux) is the conservative form of
($u) � x, m is the kinematic viscosity, and x = $ � u is the vorticity field. In 2-D, x ¼ xêz and there is no
stretching term ($ � (ux) = 0). The flow being incompressible, the velocity can be expressed as
u ¼ r� wþU1 ð2Þ

where w is the associated streamfunction, related to x by the Poisson equation,
r2w ¼ �x ð3Þ
and U1 a freestream velocity, added when performing space-developing simulations (see Section 2.7.3).
In vortex methods, the vorticity field is discretized using a set of N Lagrangian particles, see Leonard [20]

and global presentations in Leonard [21], Cottet and Koumoutsakos [9], and Winckelmans [40]. Here, we use
the Gaussian function as regularization, so that the regularized particle vorticity field is
xrðx; tÞ ¼
XN

p¼1

1ffiffiffiffiffiffi
2p
p

rp

� �3
exp � 1

2

jx� xpj2

r2
p

 !
ap ð4Þ
where xp is the position of particle p and ap ¼
R

x dx ¼ xph3
p is the particle’s strength (with hp the local grid

size). The vector streamfunction, wr, on the sides of the grid of each subdomain is thus obtained using the
PFM method. To ensure a good agreement between the grid solver and the PFM solver, the core size rp of
the regularized particles has to be chosen such that wr = wh (where wh is the streamfunction obtained using
the grid Poisson solver). In Fig. 1, we show the value of wh obtained with the grid solver for a unit vorticity
strength a0 placed at x = 0. In the multipole method, for the direct interactions, the streamfunction is obtained
as
wrðx; tÞ ¼
1

4p

X
p

erf
1ffiffiffi
2
p jx� xpj

rp

� �
ap ð5Þ
We can then determine the proper rp that leads to the same regularization as the ‘‘intrinsic” regularization of
the Poisson grid solver, which is due to the finite differences schemes used in those solvers. With the FishPack
Poisson solver used here, we find rp = 0.251hp. The resulting wr is shown in Fig. 1. We observe that the two
curves, wr and wh, are indeed in good agreement, which ensures the continuity of the streamfunction obtained
with the Lagrangian field (i.e., the particles used in the PFM method) and with the Eulerian field (i.e., the field
as seen by the grid used in the VIC method).
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Fig. 1. The streamfunction obtained for a unit vorticity strength a0 placed at x = 0: wh obtained using the grid solver (dot) and wr

obtained using the PFM method (solid).
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2.2. Global time step

We now explain the VIC–PFM methodology. We consider the case with uniform grid (of grid size h); the
case with non-uniform grid was also considered but the results are not presented here. The initial information
is a set of particles of position xp and strength ap which represents the complete vorticity field. Depending on
the number of processors p used, the spatial domain defined by the particles, chosen so that it tightly includes
the vorticity field, is split equally into several intervals in each direction (px intervals in the x-direction and
equivalently, py and pz for the others two directions) so that px � py � pz = p subdomains are created and
allotted to the p processors. This is illustrated in Fig. 2, using a 2-D example to make it easier. For interpo-
Fig. 2. Example of domain decomposition for a vorticity field shared between four processors. For proper interpolation reasons, an
overlapping between the subdomains is required.
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lation reasons that will be explained later, an overlapping between the subdomains is required (minimum 2h).
The particles are then distributed among the processors (i.e., the subdomains) depending on their positions.
To prevent useless communications, some particles are repeated on several processors: we call them the ‘‘phan-
tom” particles, in opposition to the ‘‘real” particles that are only present in one processor. Fig. 3 illustrates this
distribution. We observe that the particles located inside the overlapping region are repeated between the dif-
ferent subdomains. It is also the case for the particles located up to a distance of 2h outside the grid limits. We
will explain below, in the detailed time step explanation, how these ‘‘phantom” particles are useful during the
interpolation/redistribution steps.

We also recall that, in Lagrangian methods, particle redistribution is an essential operation to ensure a
good representation of the vorticity field and thus maintain the accuracy of the simulation as time proceeds.
A particle redistribution is thus done every few time steps (e.g., typically 5, see [27,28]). When it is time to do a
particle redistribution before the time step, one first creates a new set of particles on a regular lattice: here
based on the VIC grid. This is done using the M 0

4 high order interpolation/redistribution scheme (see Section
2.3), which preserves the moments of order zero, one and two of the vorticity field (corresponding, respec-
tively, to the total vorticity X ¼

R
xdx, the linear impulse I ¼ 1

2

R
x� xdx, and the angular impulse

A ¼ � 1
2

R
jxj2xdx). In case no particle redistribution is done before the time step, the particles are not on

a regular lattice, yet they are not much distorted.
In either case, at the beginning of the time step, each processor has a set of particles (‘‘real” and ‘‘phan-

tom”) of position xp and strength ap. The time step in each subdomain is then as follows:
Fig. 3. Example of distribution of vortex particles between the processors. The ‘‘real” particles (d) are those which represent the vorticity
field in the physical part of each subdomain. Some of these particles, the ‘‘phantom” particles (s), are repeated between the processors.
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(1) Create the subgrid used to solve the Poisson equation (resulting from the spatial subdivision of the glo-
bal vorticity field). It is chosen so that it tightly includes the vorticity field defined by the ‘‘real” particles
domain. In practice, as shown in Fig. 4, a ‘‘buffer” zone of a few h (typically 5h) is added in the ‘‘open-
domain” directions to ensure that the VIC grid is not changed too often. As already mentioned, an
‘‘overlapping” zone is also added on all ‘‘subdomain interfaces”.

(2) Interpolate the particle’s strengths onto the grid, to obtain the vorticity field x on the grid. The M 0
4 high

order interpolation scheme is used (see Section 2.3). As the stencil width of this scheme is 4h, one notes
the utility of the ‘‘phantom” particles, located in the region 2h outside of the grid limits, to properly
obtain the interpolated vorticity field everywhere on the grid.

(3) Obtain the Dirichlet boundary conditions for w on the sides of the VIC grid, using the PFM method. The
oct-tree and outer multipole expansions are computed using the set of grid points (i.e., the grid’s strength
previously interpolated) located in the ‘‘real” subdomain of each processor.

(4) Solve, locally on each processor, the Poisson equation $2w = �x on the VIC grid using a fast Poisson
solver (e.g., public domain libraries, such as Fishpack [1] and Mudpack [2]). The solver uses the grid with
w provided on the boundaries and with �x known inside. It returns the w field on the grid. In 3-D, the
Poisson solver is called three times (as x and w are vector fields).

(5) Evaluate the velocity field, u, from w, using finite differences (here second order, one-sided on the bound-
aries and centered elsewhere).

(6) Evaluate the evolution (without convection) of the vorticity field on the grid, dx=dt ¼ rh � ðuxÞ þ mr2
hx:
� The diffusion term, mr2
hx, is here evaluated using a second order scheme using the 27 points of a cube

(in 2-D, the 9 points of a square), see Section 2.6. These ‘‘isotropic” schemes have the advantage that
their truncation error is independent of the local grid orientation (as opposed to the classical ‘‘cross”

schemes).
� The stretching term, $h � (ux), is also evaluated on the grid using finite differences (also second order,

one-sided on the boundaries and centered elsewhere). It is interesting to note that using the conser-
vative form of the stretching term ($ � (ux)) leads to better results (i.e., moments, energy and zero vor-
ticity divergence conservation) than using the non-conservative form (($u) � x).
At this stage, the fields u and da/dt = h3dx/dt are known at each grid point. It remains to ‘‘send back”
the information (i.e., u and da/dt) to the ‘‘real” particles and update their position and strength. The
‘‘phantom” particles are here deleted as they are no longer useful.
Fig. 4. Illustration of the Lagrangian and Eulerian ‘‘configuration” inside a processor.
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(7) Update, still locally on each processor, the ‘‘real” particles’ position and strength:

� In the case particle redistribution has been done prior to the time step, the particles are aligned with

the grid. So, no interpolation is needed: u and da/dt are simply copied from the grid points to the cor-
responding particles. We then use the second order Runge–Kutta scheme (i.e., Euler as first step pre-
dictor and trapezoidal rule as second step corrector), as we do not have the information at the
previous time step. The Euler predictor is

xnþ1;�
p ¼ xn

p þ Dt up

���
ðxn;anÞ

ð6Þ

anþ1;�
p ¼ an

p þ Dt
dap

dt

����
ðxn;anÞ

ð7Þ
The trapezoidal rule corrector first requires redoing steps (1)–(6). Moreover, as the particles are no
longer aligned with the grid, the grid fields u and dx/dt are interpolated from the grid to the particles
(using again M 0

4). We see here the interest of the minimum 2h overlapping zone that permits to cor-
rectly interpolate the information from the grid to the particles located at the border of the ‘‘real” sub-
domain. After that, the correction step is as follows:� 	

xnþ1

p ¼ xn
p þ

1

2
Dt upjðxn;anÞ þ upjðxnþ1;�;anþ1;�Þ ð8Þ

anþ1
p ¼ an

p þ
1

2
Dt

dap

dt

����
ðxn;anÞ

þ dap

dt

����
ðxnþ1;�; anþ1;�Þ

 !
ð9Þ

� In the case particle redistribution has not been done prior to the time step, u and dx/dt are interpo-
lated from the grid, as for the second substep of the Runge–Kutta scheme. Now, as we have the infor-
mation from the previous time step, we use second order two-step schemes. For da/dt, we use Adams-
Bashforth. For particle convection, we use Leap-Frog:

xnþ1
p ¼ xn�1

p þ 2Dtup

���
ðxn

p ;a
n
pÞ

ð10Þ

anþ1
p ¼ an

p þ
1

2
Dt

 
3

dap

dt

�����
ðxn

p ;a
n
pÞ

� dap

dt

������
ðxn�1

p ;an�1
p Þ

!
ð11Þ
(8) Finally, the particles are distributed among the processors according to their new position. If the vortic-
ity field has grown and/or moved, the computational VIC domain and its subdomains limits are
redefined.

It is interesting to note that communications are needed only twice per time step: when the boundary con-
ditions are determined using the PFM method (3) and during the particles distribution (8). It leads to a good
speedup, in fact nearly the same as the speedup of the PFM method used alone but, as we will see, with a better
global computational time.

We should also mention that, in order to limit the number of particles, a ‘‘cut” is done every time step. This
operation consists in removing the particles having a strength weaker than a fraction of the maximum strength
present in the flow. In the case where strong stretching occurs, the maximum strength can rapidly grows up
(and thus leading to a too important cut). In that case, the maximum strength taken into account is the max-
imum strength of the initial condition. Typically, the limit of the cut is taken as 10�5kakmax. To ensure the
total vorticity conservation, the sum of the ‘‘cut” vorticity is uniformly distributed to the remaining particles.

2.3. Particle redistribution/interpolation scheme

As already mentioned, Lagrangian methods require particle redistribution, see [9,40]. It is an essential oper-
ation to maintain a good overlap of the particle regularization functions, and thus maintain a good represen-
tation of the vorticity field. In the VIC–PFM method, as we continuously go between the particles and the
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grid, we also need a good quality scheme to bring the particles information to the grid, and the grid informa-
tion to the particles. The scheme chosen is the M 0

4 scheme [23] (the K3 scheme was also studied but, in 3-D,
some noise was noticed, see also [9]). In 1-D, the M 0

4 scheme is as follows:
M 0
4ðX Þ ¼

1
2
ð2� 5X 2 þ 3X 3Þ if 0 6 X 6 1

1
2
ð1� X Þð2� X Þ2 if 1 < X 6 2

0 otherwise

8><>:

where X is the distance between the particle and the grid node, normalized by h. The fraction of the particle
information which is attributed to the grid node (or conversely) is given by M 0

4ðX Þ. In 2-D and 3-D, one uses
tensor products.

The M 0
4 scheme is continuous and so is its first derivative. It is a second order scheme: it conserves X, I and

A. Of course, the use of such scheme introduces some dissipation. One can show that, on average, it acts as a
hyper-viscosity. For a h/2 shift between particle positions and grid (which represents the worst situation), it
corresponds to a hyper-viscosity operator discretized to second order and with effective m(2)Dt equal to 3h4/
128. Considering all possible shifts statistically, the net hyper-viscosity obtained is only a fraction of that.

2.4. Projection scheme used to maintain zero vorticity divergence

In 3-D, vortex particle methods do not guarantee that the divergence of the vorticity field remains zero in
long-time simulations and/or in under-resolved simulations. In the VIC method (thus also in the VIC–PFM
method), a good way to prevent any possible bad behavior consists in regularly re-projecting the vorticity field
onto a divergence free basis [12,29]:
xnew ¼ x�rhF ð12Þ
where F is obtained by solving
r2
hF ¼ rh � x ð13Þ
on the grid using, again, the efficient Poisson solver, with Dirichlet boundary condition F = 0. This operation
is done as soon as the vorticity divergence $h � x is seen to exceed a prescribed value, and when the particles
are on a regular lattice (i.e., after a redistribution). The new vorticity field is such that $h � xnew = 0 and the
particle strengths are reset to anew = xnewh3. This operation provides an efficient and essentially non-diffusive
‘‘relaxation” scheme, which allows for simulations at high Reynolds number and for arbitrarily long times.

2.5. Subgrid-scale modelling for LES

The aim of this new VIC–PFM method is also to be able to simulate complex 3-D flows at high Reynolds
number, thus also using Large-Eddy Simulation (LES) approaches. In this case, only the most energetic scales
are captured and the effect of the subgrid-scales (SGS) on the captured scales is modelled.

The capabilities of different SGS models for LES, here implemented in the VIC method, have been
investigated in [8,10,15–17,37,39]. Their applicability to the simulation of decaying homogeneous isotropic
turbulence (HIT) was also tested. In [8], various SGS models were tested and compared on a more com-
plex and transitional flow: the multiscale dynamics developing in a counter-rotating four-vortex system
that evolves from a simple state to a turbulent state. Here, we use a simplified version of the regularized
variational multiscale model (here called RVM), where the diffusion, using an effective eddy viscosity msgs,
operates solely on the high frequency part of the LES vorticity field. In the vorticity–velocity formulation,
this gives:
Dx

Dt
¼ r � ðuxÞ þ mr2xþr � ðmsgsðrxs þ ðrxsÞTÞÞ ð14Þ
with xs the ‘‘small-scale” vorticity field and msgs ¼ CðnÞR D2ð2SijSijÞ1=2 the subgrid viscosity. The LES cut-off
length D is taken equal to the grid size h. The coefficients CðnÞR are taken from [8]. Sij is the strain rate tensor:
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Sij ¼ 1
2
ðgij þ gjiÞ with gij = oui/oxj. The rhs of Eq. (14) is discretized as presented in Section 2.6. Here the small-

scale fields are obtained using a compact (stencil 3) tensor-product explicit discrete filter which is iterated n

times to produce an order 2n filter, see [17] for more details, and also [16,39].
In some simulations, done prior to the RVM model, we also performed LES using a simple ‘‘hyper-viscos-

ity” SGS dissipation model. It was also first chosen for its simplicity of implementation and its computational
efficiency. The LES equations are then taken as
Fig.
Dx

Dt
¼ r � ðuxÞ þ mr2x� C

T 0

ðh2r2Þ2x ð15Þ
with T0 a global time scale and C a coefficient. The ðh2r2
hÞ

2 operator is evaluated by applying twice the discrete
Laplacian of Section 2.6.

The global and spectral behavior of these models, as well as others, are discussed in detail in [17]. The pres-
ent brief presentation is sufficient for the examples of VIC–PFM applications presented here.

2.6. Laplacian schemes that are less sensitive to the grid orientation

We here present the 2-D and 3-D ‘‘isotropic” Laplacian schemes for which the performance is less depen-
dant of the local grid orientation than the classical ‘‘cross” scheme. They were designed so that the truncation
error is itself a Laplacian: see Fig. 5 for the coefficients. It is easily verified, using Taylor series, that we then
obtain
ðr2
hxÞi;j;k ¼ r2 xþ h2

12
r2x

� �� �
i;j;k

þOðh4Þ ð16Þ
The leading truncation error term is thus (h2/12) ($4x)i,j,k which is not sensitive to the orientation of the grid
with respect to the solution $2x. This is not the case when using the usual cross scheme.
5. Illustration of 2-D and 3-D second order Laplacian schemes: the ‘‘cross” schemes (left), and the ‘‘isotropic” schemes (right).
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For LES, the RVM model (rhs of Eq. (14)) is programmed as follows:
Fig. 6.
contrib
h2r � ðmsgsðrhx
s þ ðrhx

sÞTÞÞ ¼ 2

30

ðmsgs
iþ1;jþ1;kþ1 þ msgs

i;j;kÞ
2

ðxs
iþ1;jþ1;kþ1 � xs

i;j;kÞ þ � � �

 �

þ 1

30
½� � �� þ 18

30
½� � ��

ð17Þ
2.7. Beyond purely open-domain flows

There is a large class of purely open-domain flows which can be solved efficiently using the VIC–PFM
method as such. We here describe how the method can be extended to further address problems with one peri-
odic direction, problems bounded by a ground, or problems evolving jointly in space and time (space-devel-
oping flows).

2.7.1. Case of flows with one periodic direction

As we will illustrate in Section 4.2 using an aircraft vortex wake simulation, the VIC–PFM method is also
implemented with one periodic direction. This allows to determine the w field on the four faces of the grid
corresponding to the unbounded directions.

When the code is used on a single processor or when the domain is not split in the periodic direction,
the Poisson solver used (here FishPack [1]) is able to take into account one direction with periodic con-
dition and the two others with Dirichlet conditions. A fast and optimal way to determine the w field is
illustrated in Fig. 6. To determine the w field at a point P, one has to compute the influence of the
main box X (i.e., the computational domain) and also of a series of equivalent boxes repeated period-
ically on both sides of the main box. We use the fact that the influence of the box X1left

on the point P

is exactly the same as the influence of the main box X on the point P 1right
, and conversely; and so on for

all points on both sides of X. In this way, the w field at P can be computed by summing the contri-
butions of X on P, P ileft

and P iright
. Only the multipole expansions for the computational domain X are

required. Experience has shown that taking 50 image points on each side provides a well converged solu-
tion (i.e., a periodic solution). Compared with the non-periodic case, this periodic evaluation has an
additional computational cost of only about 25%. It is thus still very acceptable.

In the parallel case (i.e., when the domain X is itself split in the periodic direction in various subdomains),
the Poisson equation is solved in two steps to ensure a perfect continuity between each subdomain:
r2w ¼ �x

r2w0 ¼ �x0

(

Illustration of the PFM method used to compute flows with one periodic direction. The w field at P is obtained by summing the
utions of X on the ‘‘shifted” points.
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where x is the 2-D vorticity ‘‘base flow” field (i.e., the vorticity field space averaged in the periodic direction)
and x0 ¼ x� x. The base flow is first evaluated on the grid and is used to obtain the boundary conditions w

required to solve the first Poisson equation. Then, the x0 field is evaluated and is used to obtain the related w0

boundary condition to solve the second Poisson equation. The total streamfunction w is then simply the sum
of w and w0.

In that way, we impose that each processor in the periodic direction ‘‘sees” exactly the same base flow field.
Without such procedure, we have noticed, in long-time simulations, the possible apparition of some small dis-
continuities at the subdomain interfaces. This behavior is due to the method used to compute the periodic
boundary conditions. Indeed, even if 50 image points are sufficient to have a well converged periodic solution,
it does not guarantee that the solution obtained on the ends of the periodic domain are exactly the same, the
multipole summations being not exactly equivalent. Imposing the same base flow field all over the periodic
domain avoids this problem and leads to a continuous periodic solution.

2.7.2. Case of flows in semi-open domains

As we have already mentioned, the PFM method is ideal to take into account boundary conditions for
open-domain flows, also those with one periodic direction. However, in some cases (e.g., flows bounded by
a flat ground, space-developing simulations with inflow and outflow, etc.), we also may want to impose:

� A no-through flow plane: this is used for bounded flows where we need to enforce the no-through flow con-
dition on a flat plane. For that, we symmetrize the vorticity field with respect to the plane (here written for a
x–y plane located at z = 0):
xnðx; y;�zÞ ¼ xnðx; y; zÞ
xtðx; y;�zÞ ¼ �xtðx; y; zÞ

�

where xn and xt are respectively the normal component and the tangential components of the vorticity
field. This leads to un(x,y, 0) = 0.

� A through flow plane: this is used for outflow where the tangential velocity is enforced to zero. This is also
done by enforcing symmetries on the flow with respect to a flat plane. It leads to the following constraints
on the vorticity field (also written for a x–y plane located at z = 0):
xnðx; y;�zÞ ¼ �xnðx; y; zÞ
xtðx; y;�zÞ ¼ xtðx; y; zÞ

�

This leads to ut(x,y, 0) = 0.

In practice, we do not have to build the symmetrized vorticity field explicitly: when one evaluates, using the
PFM method, the w field at a point x (for the boundary conditions) induced by the vorticity field, one also
makes evaluations at symmetric locations and adds it to the first contribution, changing adequately the sign
of each component. In the case of more complex bodies than flat planes, boundary element methods are then
used (see [28,40]).

In order to simulate a flow above a viscous ground, we also need to enforce a zero slip velocity at the wall. It
is done in two steps. First, we use the ‘‘no-through flow” symmetrization to enforce a zero normal velocity
over the whole ground plane. After the Poisson equation has been solved, there is however still a spurious slip
velocity, uslip, at the wall. The second step is then to enforce the no-slip by emitting a vorticity flux at the wall:
m
ox

on
¼ Dc

Dt
; Dc ¼ 2uslip ð18Þ
Since the ground is flat, there is no need to solve numerically a boundary integral equation for the panel
strengths: the solution is trivially obtained as Dc = 2uslip. This flux must be emitted during a time Dt, see
[9,18,28,40]. As this operation is done on the VIC grid, we have square panels of strength Dc and size
h � h. We here consider that the ground is located on the XY plane and that the panels diffuse towards the
positive Z direction. The ‘‘amount” of strength diffused, from one panel, to a grid point located at
(x,y,z > 0), during a time Dt, is given by:
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Da ¼
Z Dt

0

da

dt
dt ð19Þ
with
da

dt
ðx; y; zÞ ¼

Z xþh=2

x�h=2

Z yþh=2

y�h=2

Z zþh=2

z�hl=2

dx

dt
dzdy dx ð20Þ

¼ Dc

Dt
½erfcðuÞ�ðz�hl=2Þ=

ffiffiffiffi
4mt
p

ðzþh=2Þ=
ffiffiffiffi
4mt
p

� 	 ffiffiffiffiffiffi
4mt
p 1

2
½ierfcðuÞ�x=

ffiffiffiffi
4mt
p

ðx�hÞ=
ffiffiffiffi
4mt
p � ½ierfcðuÞ�ðxþhÞ=

ffiffiffiffi
4mt
p

x=
ffiffiffiffi
4mt
p

� 	� �
�

ffiffiffiffiffiffi
4mt
p 1

2
½ierfcðuÞ�y=

ffiffiffiffi
4mt
p

ðy�hÞ=
ffiffiffiffi
4mt
p � ½ierfcðuÞ�ðyþhÞ=

ffiffiffiffi
4mt
p

y=
ffiffiffiffi
4mt
p

� 	� �
ð21Þ
where ierfcðuÞ ¼
R1

u erfcðvÞdv ¼ 1ffiffi
p
p expð�u2Þ � uerfcðuÞ. Notice that hl/2 = h for the ‘‘first layer” of grid

points (i.e., located at z = h) and hl/2 = h/2 otherwise. The time integral in Eq. (19) is evaluated numerically
using a Gauss quadrature (4 points). The vorticity is generally distributed on a ‘‘region” of size 7h � 7h � 4h

centered on the panel, so that we ensure that the whole panel strength is distributed. As this operation is done
on the grid, most of the terms of Eq. (21) can be precomputed for all panels. The no-slip condition is enforced
at each time step, just after step (6).

When the divergence is reset to zero, using the projection scheme presented before, the boundary conditions
for the resolution of the Poisson equation also need to be changed. At the wall, we impose Neumann bound-
ary conditions, oF/on = 0, so that the normal vorticity remains zero: xnew

z ¼ xz � oF =oz ¼ xz ¼ 0.

2.7.3. Case of space-developing simulations

The setup for space-developing simulations is presented in Fig. 7. It essentially consists on an inflow con-
dition that dynamically evolves in space and time, due to the vorticity and the induced velocity of an added
potential flow / (and maybe time dependent).

In order to ‘‘close” the problem, a fixed vorticity field is added in front of the inflow plane to close the vor-
tex lines coming from the ‘‘main” vorticity domain. The injection of the entry condition is ensured by buffer
particles, located in front of the entry plane and convected with the velocity computed on the inflow plane. As
soon as their position is inside the main vorticity domain, they become ‘‘real” particles. As we do not want to
keep the vortex wake particles ‘‘forever”, an outflow boundary condition is also used; it is imposed by enforc-
ing symmetries on the flow.

When the boundary conditions are obtained using the PFM method, the set of particles representing the
fixed vorticity field is used, in addition to the particles from the main vorticity domain. Then, the symmetri-
zations previously presented are used to impose the correct outflow conditions and/or the presence of a
ground, as shown in Fig. 7. The choice of the outflow conditions is dictated by the vorticity field. If the normal
Fig. 7. Illustration of the configuration used for space-developing simulations using the VIC–PFM method.
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the boundary grid points, we are able to save a lot of CPU time and finally obtain a large factor (17) between
the two methods.

It is interesting to measure where the computational time is spent in this hybrid method: roughly half of the
time is devoted to the determination of the proper w boundary conditions using the PFM method, a quarter is
devoted to the grid Poisson solver, and a quarter to the interpolation operations between the particles and the
grid; the other operations (finite differences for velocity, stretching term, particles distribution among the pro-
cessors, etc.) have a negligible cost.

We also compare with the VIC method alone, assuming periodic conditions. One clearly sees, in Fig. 8, that
the Cases 1 and 2 are still very far from representing a vortex ring in unbounded space. Case 3 could be con-
sidered as closer to an unbounded flow, but the memory requirements then become very large.

Besides the efficiency, the accuracy of the results between the different cases was also considered. The
limitation was that the VIC method solves a full periodic problem whereas the PFM and the VIC–PFM
methods solve an open-domain problem. A reference calculation was first performed using the PFM method
with a very low error criteria. The efficiency of the VIC–PFM and the PFM methods was then compared
using the same accuracy criteria. For the VIC method, we are not able to reach the same accuracy because
the grid that would be required to obtain the equivalent open-domain condition would be too large. To
make the comparison as fair as possible, we consider Case 3 closer to an unbounded flow, even if the solu-
tion is still obviously polluted by the periodicity. One can also noticed that the Poisson solver and the meth-
odology used in the VIC and the VIC–PFM methods are exactly the same, and so their accuracy, but
applied on a problem with different boundary conditions. It is thus mainly important to ensure that the
accuracy criteria is equivalent between the VIC–PFM and the PFM methods, which solve the same
problem.

Another interesting point is the speedup performance of the VIC–PFM implementation. Two cases are
illustrated to distinguish the gain obtained with two different scalings: the weak scaling, where the problem
size is doubled when the number of processors is doubled, and the strong scaling, where the problem size is
held fixed. When a OðNÞmethod is used, a perfect parallelization would lead to a speedup equal to the number
of processors. Here, the method is the combination of two OðN logðNÞÞ methods, the best speedup that can be
obtained is thus not as good. In [11], the computational cost of the VIC method is fitted with OðNaÞ, where
a 	 [1.10–1.15]. In the range of N classically used (i.e., N 2 [104–108]), both writings are essentially equivalent:
OðN logðNÞÞ 	 OðNaÞ for a 	 [1.11–1.15]. Here, we used the OðN logðNÞÞ fit.

3.1. Weak scaling

For the weak scaling, the computational time using one processor and p processors are respectively:
T 1 ¼ CP6N 2=3 logðrNÞ þ CVN logðNÞ ð22Þ
T p ¼ CP6N 2=3 logðprNÞ þ CVN logðNÞ ð23Þ
where CP and CV are the coefficients related to the PFM method and to the VIC method, r is a ‘‘filling” coef-
ficient that gives the ratio between the number of particles and the number of grid points (typically r 	 0.5)
and N is the number of grid points, here with a grid assumed of cubical shape. The first term in the rhs of
Eq. (23) is the cost of the boundary conditions computed on the 6 faces of the grid (composed of N2/3 grid
points) using the prN particles. The second term is the cost of the Poisson equation resolution: for the weak
scaling, it remains constant with the number of processors. The best reachable speedup is then given by
SmaxðpÞ ¼ p
T 1

T p
¼ p

1

1þ logðpÞ

logðrÞþ 1þ N1=3

6ðCP=CVÞ

� 	
logðNÞ

ð24Þ
The curve is shown in Fig. 9 and is compared with the speedup effectively obtained with a simulation on a
single domain size of N = 1.2 � 106, r 	 0.5 and with CP/CV = 100. This last value is deduced from sequential
simulations and is in good agreement with [11]. The speedup obtained is good: even with 128 processors and
more than 150 million grid points, the efficiency is still very acceptable: �(p) = S(p)/Smax(p) 	 0.63.
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Fig. 9. Speedup performance for the weak scaling (top) and for the strong scaling (bottom): the perfect parallelization of a OðNÞ method
(solid), the best reachable parallelization of a VIC–PFM method (dashed) and the speedup obtained with our code (dash-dot).
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3.2. Strong scaling

For the strong scaling, the computational time using one processor and p processors are here respectively:
T 1 ¼ CP6N 2=3 logðrNÞ þ CVN logðNÞ ð25Þ

T p ¼ CPAðpÞN 2=3 logðrNÞ þ CV

N
p

log
N
p

� �
ð26Þ
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where A(p) is the coefficient taking into account the variation of the number of grid points where the boundary
conditions have to be computed (depending on the number of processors used). Again, the first term in the rhs
of Eq. (26) is the computational cost related to the boundary conditions evaluated using the rN particles. The
second term is the cost of the Poisson equation resolution. Here, the grid is split between the p processors and
becomes smaller when p increases. The best reachable speedup is then given by
SðpÞ ¼ T 1

T p
¼ ðCP=CVÞ6 logðrNÞ þ N 1=3 logðNÞ
ðCP=CVÞAðpÞ logðrNÞ þ N1=3

p log N
p

� 	 ð27Þ
The curve is illustrated in Fig. 9. The real speedup is here obtained using a simulation with N = 4.8 � 106 and
r 	 0.5. We observe that, up to 16 processors, both speedup curves collapse very well. With 32 processors, the
real curve saturates because the grid allocated to each processor becomes too small: no significant further gain
can then still be obtained.

We can finally conclude that the coupling of the PFM and VIC methods provides an efficient algorithm for
truly unbounded flow problems, with good computational efficiency and much acceptable memory
requirements.

4. Validations and illustrations

4.1. Instability of vortex rings at moderate and high Reynolds numbers

The first application we consider is the instability of vortex rings. The objective is not to carry a detailed
study on vortex rings instabilities, but to show that the VIC–PFM method is competitive for this type of flow
because of its Lagrangian framework (low dispersion) and its unbounded domain capacity. We first examine a
configuration that was previously studied by Shariff et al. [36]: a vortex ring at moderate Reynolds number,
where we examine the most amplified waves and their growth rate. Here, we will also simulate the complete
non-linear phase, up to the saturation of the instabilities, and also capture the following global decay. The
second case is far more challenging: a much thinner vortex ring and at higher Reynolds number. We will also
examine the most amplified waves, their growth rate and compare them to those predicted using Saffman’s
theory.

The initial azimuthal vorticity distributions are Gaussian, function of the distance to the ring centerline:
xh ¼
C0

pr2
0

expð�s2=r2
0Þ ð28Þ
with s2 = z2 + (r � R)2, C0 the initial circulation, r0 the initial core size, and R the ring radius. The time scale
used for normalization is taken as t0 = R2/C0. This distribution does not constitute a steady solution, but for
core rotation frequencies not small compared to the growth rate, this unsteadiness will act as an intrinsic forc-
ing on the instability waves [35,36]. The initial perturbation is done by displacing the vortex lines radially,
from their unperturbed position r to their perturbed rpert, as follows:
rpertðhÞ ¼ rð1þ �gðhÞÞ ð29Þ

where g(h) is a sum of Fourier modes (with unit amplitudes and random phases) and � is the perturbation
amplitude. To maintain the zero divergence of the vorticity field after applying the perturbation, xh and xr

are realigned along the perturbed vortex lines.
The first vortex ring studied has a r0/R = 0.4131 and is perturbed on the 24 first modes with an amplitude

� = 0.0002; the Reynolds number is Re = C0/m = 5500 (corresponding to Case 1 in Shariff et al. [36]). The dis-
cretization is h/R = 0.040 and the time step used is Ds = Dt/t0 = 0.05. To be able to better capture the turbu-
lent decay phase, we add some hyper-viscosity SGS dissipation (with C = 2.5 � 10�2). Without such LES
model, one cannot go much further than s = 80. We also use the projection scheme described in Section 2.4.

The simulation was carried out for 4700 time steps and took �64 h on a single Pentium IV at 2.4 GHz. The
number of particles goes from �3.6 � 105 up to �1.0 � 106, and the number of grid points grows from
�9.0 � 105 to �4.4 � 106. At s = 100, a part of the distant wake left by the vortex ring was removed, to be
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able to continue the simulation on a single processor. Because of the very low energy level of this far wake, the
flow around the vortex ring is not affected by this cut.

Before presenting the results, we provide definitions regarding the characterization of the instabilities and
the evaluation of the energy diagnostics. Formulating the velocity field in cylindrical coordinates, we can write
uðr; h; z; tÞ ¼
XNh=2

n¼�Nh=2

buðr; n; z; tÞeinh ð30Þ
with Nh the number of azimuthal grid points; a similar development applies to w and x. The azimuthal Fourier
transform of u is given by
buðr; n; z; tÞ ¼ 1

2p

Z 2p

0

uðr; h; z; tÞe�inh dh ð31Þ
The azimuthal modal energy En is accordingly defined by
EnðtÞ ¼
1

2

ZZ bu � bu�r dr dz ¼ 1

4

ZZ bw � bx� þ bx � bw�h i
r dr dz ð32Þ
with superscript * denoting the complex conjugate. Using the symmetry (En = E�n), we consider only the
modes with n P 0. Accordingly, the modal energy becomes
EnðtÞ ¼
ZZ bu � bu�r dr dz ¼ 1

2

ZZ bw � bx� þ bx � bw�h i
r dr dz ð33Þ
The total energy is then
EðtÞ ¼
XNh=2

n¼0

EnðtÞ ð34Þ
The modal energy En(t) is here computed using the stream-vorticity fields. At the highest wavenumbers, a
difference is noticed with the energy computed using the velocity field. It is due to the truncation error intro-
duced when the velocity is computed from the stream field using finite differences. Fig. 10 shows the evolution
of the modal energies En. One can observe different phases: the transient phase for s 6 25; the linear phase,
when linearly fastest growing eigenmodes begin to dominate over transients (25 6 s 6 80); the non-linear
stage, when highest wavenumber modes begin to grow more rapidly than the first eigenmodes
(80 6 s 6 150); the saturation which occurs at s 	 150; and finally, the global decay for s P 150. The most
amplified modes during the linear phase are n = 6, n = 7, and, a little less, n = 8. Shariff et al. found the
n = 5, n = 6 and n = 7 modes. In our simulation, the n = 7 mode is dominant whereas it was the n = 6 in Sha-
riff’s simulation. But, if we compare the growth rates, an = 1/(2En)(dEn/dt), evaluated at s = 45, we obtain
very similar values. These are illustrated in Fig. 10a. We obtain a growth rate equal to �0.08 for the n = 6
and n = 7 modes (with a small preference for n = 7), which is the same value as Shariff found (with a small
dominance for the n = 6 mode). The small difference observed could be due to the periodic condition in
the z-direction in Shariff’s simulation, contrary to the unbounded domain condition here. Indeed, his box size
in this direction was equal to 6R; but, at s = 45, the ring has travelled over 8R. The ring has then entered in
contact with his own wake, which is dominated by the n = 6 mode. This could explain why the n = 6 mode was
a little more present in Shariff’s simulation than in ours.

Fig. 10b provides the growth rates during the non-linear phase at s = 100. One observes that n = 1 and
n = 2 modes are significantly amplified (as also observed by Shariff). One also sees that the next most non-lin-
early amplified waves are n = 12 and n = 13: the harmonics of the most linearly amplified modes, as also
observed by Shariff. The next most amplified wave is n = 19, which is close to the second harmonic.

Fig. 11a and b show isocontours of xz t0, indicating the presence of axially elongated structures, in the
plane of maximum kxk during the linear stage (s = 70), and at the early non-linear stage (s = 100). One sees
that distinct patterns emerge. The n = 6 and n = 7 waves are clearly dominant and have the signature of sec-
ond radial mode (i.e., three layers arranged radially), also consistent with flow visualization experiments.
Fig. 11c–f also give isocontours of xzt0 (levels have changed) but for longer times, during the non-linear phase
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Fig. 10. Vortex ring at Re = 5500. Top: evolution of the modal energies, for modes 0–15. Bottom: growth rates for the modal energy at
s = 45 (a) and s = 100 (b). The modes which still have an oscillatory behavior are not shown.

9108 R. Cocle et al. / Journal of Computational Physics 227 (2008) 9091–9120
and after the saturation. One observes the rapid growth of axial vorticity, and for (c) and (d), the loss of well
structured patterns: the ‘‘turbulent” phase, with strong decay. Fig. 12 provides the front three-dimensional
views of the ring evolution for the same times as in Fig. 11. One first observes the distortion of the isosurfaces
due to the linear instability, then the more complex flow resulting from the non-linear evolution. At s = 175,
we also see an ejection of hairpin vortices into the wake: this behavior was observed in experiments by Schnei-
der [34], Auerbach [4] and Weigand and Gharib [38].

For the second case, we choose a much thinner vortex ring. The initial core size is here set to r0/R = 0.2.
The ring is also perturbed on the first 24 azimuthal modes, with an amplitude �/R = 0.0001. The Reynolds
number is also increased to Re = 25,000. The discretization is quite fine, h/R = 0.010, and the time step is
Ds = Dt/t0 = 0.01. To be able to also capture the turbulence and the turbulent decay phase, we add a SGS
model: we here use the advanced RVM model presented in Section 2.5, which is guaranteed not to dissipate
in the well-resolved flow region.

The simulation was carried out for 13,500 time steps and took 250 h on 9 Opteron at 2.6 GHz. The number
of vortex particles grew from 5.5 million to 10 million, and the number of grid points grew from 12 million to





Fig. 12. Vortex ring at Re = 5500: 3-D front view of the instabilities. Two isosurfaces of vorticity shown: kxkt0 = 1.0 (opaque) and
kxkt0 = 0.686 (semi-transparent). The grey scale is proportional to xz. Times shown are: s = 70, s = 100, s = 115, s = 130, s = 175 and
s = 220.
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nðtÞ ¼ 2:51

1:12091sðtÞ=R
with s2ðtÞ ¼ r2

0 þ 4mt ð35Þ
For t 2 [0; 40] (i.e., during the linear phase), n(t) 2 [10.4; 11.2] which is exactly the most unstable mode ob-
tained numerically. Fig. 13 illustrates the energy spectrum at three times. We here also see the most unstable
mode n = 11 and the next most non-linearly amplified mode, its first harmonic n = 22. We observe that, for
the last time, the spectra has a fair k�5/3 behavior, arguing that we tend to a fully turbulent decaying flow.

Fig. 14 shows isocontours of xzt0 in the plane of maximum kxk during the linear stage (s = 50), the early
non-linear stage (s = 76), at the saturation (s = 92), during the decay phase (s = 102) and when the flow
becomes fully turbulent (s = 112 and s = 134). Fig. 15 provides the front three-dimensional views of the vortex
ring evolution, shown at half the grid resolution. The different phases are also well observed.
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Fig. 13. Thin vortex ring at Re = 25,000. Top: evolution of the modal energies, for modes in the range 0–23. Bottom: energy spectrum at
s = 76 (dash-dotted), s = 92 (dashed) and s = 134 (solid).
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4.2. Two vortex system in ground effect

As an illustration of periodic and half-unbounded flows, we present a DNS of a two vortex system in
ground effect at moderate Reynolds number. The thorough understanding of aircraft wake dynamic is largely
studied in several research programs, especially in order to reduce the separation standards while maintaining
or increasing the safety level during landing and take-off phases. The far wake of an aircraft is mainly consti-
tuted of two counter-rotating vortices (of circulation C0 and separated by b0). This event can be hazardous,



Fig. 14. Thin vortex ring at Re = 25,000: isocontours of xzt0 in the plane of maximum kxk. Dashed and dotted lines represent positive
and negative values, respectively. Levels are first by step of 0.02: (a) s = 50 (linear stage), levels are then by step of 0.16, (b) s = 76
(beginning of the non-linear stage). Levels are finally by step of 0.64: (c) s = 92 (saturation), (d) s = 102 (decay phase), (e) s = 112 and (f)
s = 134 (turbulent and decay phase).
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especially near the ground. A follower aircraft entering such wake could experience a strong rolling moment.
Harvey and Perry [14] performed first experimental tests of a wing in ground effect where they observed the
well-known rebound of the vortices due to the separation of the boundary layer created on the no-slip wall.
Later, Barker and Crow [5] also observed experimentally the rebound phenomenon. Several numerical studies,
in 2-D, were also performed by Peace and Riley [26], confirmed analytically by Saffman [31] and Orlandi [24].
Luton and Ragab [22] showed, using 3-D numerical simulations at low Reynolds number, that the interaction
between a two vortex system and a viscous ground leads to a complex three-dimensional flow due to the
appearance of short-wavelength instabilities (i.e., Widnall instabilities) on the secondary vortices. Here, we
performed a similar simulation but at a higher (yet still moderate) Reynolds number, to obtain a stronger
interaction between the secondary and primary vortices compared with [22].



Fig. 15. Thin vortex ring at Re = 25,000: 3-D front view of the instabilities. Two isosurfaces of vorticity shown: kxkt0 = 3.0 (opaque) and
kxkt0 = 1.0 (semi-transparent). The grey scale is proportional to xz. Times shown are: s = 50, s = 76, s = 92, s = 102, s = 112 and
s = 134.
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The problem is taken periodic in x and of large extent Lx = 4b0. Initially, the vortices are algebraic vortices:
xxðrÞ ¼
C0

p
r2

ðr2 þ r2Þ2
ð36Þ
with C0 the total circulation and with a small core size r/b0 = 0.05. The dimensionless time is defined as s = t/t0

with t0 = b0/V0 (based on the descent velocity of a vortex pair away from the ground: V0 = C0/(2pb0)). They are
separated by a distance b0 and are placed at height h0 = b0. The discretization is h/Lx = 1/256. The simulation is
a DNS at Re = C0/m = 5000, still low enough to avoid the use of a SGS model. The run was performed on 16
Opteron 2.6 GHz, 8 in the periodic direction and 2 in the spanwise direction.
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Fig. 16 shows a view of the solution at different times. One sees that secondary vortices emanate from the
ground because of the detachment of the boundary layer and are responsible for the rebound of the main vor-
tices. During their orbital movement, short-wave (elliptic) instabilities develop on these secondary vortices.
The non-linear interactions of these unstable modes and their saturation lead to a strong interaction with
the main vortices, then to a complex 3-D flow and eventually, to the turbulent decay of the main vortices.
Fig. 17 shows, at the same times, the space averaged vorticity for the right half plane. We observe more pre-
cisely the detachment of the boundary layer, the resulting orbital movement and, eventually, the turbulent vor-
tex system.

We also compare our results to the solution obtained using a 2-D finite differences (FD) method that is
energy conserving: it is thus a good reference to further validate our results. In this code, the computational
box is also periodic in the spanwise direction: the box size was thus taken large ‘‘enough” (Ly = 8b0) to mit-
igate the effect of the periodic images. The domain in the wall normal direction is taken as Lz = 3b0 and a slip
condition is used on top. The discretization is h/b0 = 0.004 (thus Ny = 2000 and Nz = 750).

Fig. 18 shows the energy evolution. The curves compare quite well before the saturation of the secondary
vortex instability (i.e., before the flow becomes 3-D). Indeed, once the short-wavelength instabilities appear on
the secondary vortices, leading to the strong interaction, the dissipation rate increases strongly: it results to an
enhanced decreased of the intensity of the vortex system compared to the 2-D case. Fig. 18 also compares the
trajectories of the center of the main vortices (defined as the maximum of the averaged axial vorticity in the 3-
D case, and as the maximum vorticity in the 2-D case). Even during the essentially 2-D phase, a difference is
observed, due to the artificial confinement effects in the FD code: it leads to a slightly different displacement of
the vortices (i.e., a different ‘‘rebound”). We see again the usefulness of an open-domain simulation performed
by the VIC–PFM combination.
Fig. 16. Two vortex system in ground effect at Re = 5000: two isosurfaces of vorticity are shown (for one periodicity length):
kxkb2

0=C0 ¼ 10:0 (opaque) and 1.0 (semi-transparent). The grey scale is proportional to xx. Times shown are: s = 0.08; s = 1.6 (secondary
vortices emanate from the ground); s = 2.9 (short-wave instabilities visible on the secondary vortices); s = 3.5 and s = 4.2 (strong
interactions between the vortices); s = 6.1 (‘‘turbulent” and decay phase).



Fig. 17. Two vortex system in ground effect at Re = 5000: isocontours of longitudinally averaged vorticity xxt0 for the right half plane.
Dashed and dotted lines represent positive and negative values, respectively. Levels are by step of 0.8p. The figures are shown at the same
times as in Fig. 16.
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4.3. Space-developing wake behind an elliptically loaded wing in ground effect

The last illustration of application is the case of a space-developing (SD) wake generated by an elliptically
loaded wing in ground effect at a moderate (yet significant) Reynolds number (C0/m = 10,000), and using LES.
One important feature, that is not present in the previous time-developing (TD) simulations is the fact that the
SD wake induces an axial velocity defect in the vortices. It therefore also exhibits an earlier and more violent
transition to turbulence than the TD simulations. The SD configuration further differs from the TD case by
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Fig. 18. Two vortex system in ground effect at Re = 5000. Top: total energy evolution using the VIC–PFM method (solid) and using a 2-D
FD method with spanwise periodicity (dashed). Bottom: trajectory of the primary vortex.
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the fact that the vortex tubes describe a spiraling motion. This feature is also suspected to trigger some kind of
vortex meandering.

We consider the wake generated by an elliptically loaded wing of span b. The initial vortex sheet produced
by the wing is as follows: its circulation per unit length is cðyÞ ¼ � dC

dy ðyÞ with
CðyÞ ¼ C0 1� y
b=2

� �2
 !1=2



Fig. 19. 3-D space-developing LES of wake vortices behind an elliptically loaded wing in ground effect: isosurfaces of vorticity norm,
kxkt0 = 80 (opaque) and 25 (semi-transparent), colored by the longitudinal component of vorticity, when the flow has reached it’s regime.
Top and side views.
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In reality, C(y) is slightly modified to take into account the ground effect using a modified ‘‘lifting line” theory
based on Prandtl’s theory and the use of ‘‘images”, but we do not enter into the details here. This singular vortex
sheet is then regularized in order to produce a regular vorticity field. For this, we use convolution with a Gaussian:
xrðy; zÞ ¼
1

2pr2

Z b=2

�b=2

exp �ðy � y0Þ2 þ ðz� h0Þ2

2r2

 !
cðy0Þdy0 ð37Þ



Fig. 20. 3-D space-developing LES: top view, here shown at full resolution, of the regions x/b = [4,8] and [8,12] at an arbitrary time once
in regime.
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where h0 is the distance to the ground and r is the regularization parameter. We here used r/b = 0.02. The
regularized vorticity field is then further discretized using particles put on multiple layers.

The height of the wing flying above the ground is h0/b = 0.25. Fig. 19 shows a snapshot of the spatially
developing flow when established. The effective computational domain extends between the inflow and out-
flow planes. The flight velocity, U1, was here taken lower than that of a realistic case: U1/V0 is about 4 times
lower than it should (where V0 = C0/(2pb0) and b0 = (p/4)b). That choice limits the computational require-
ments in the longitudinal direction. A more realistic case would require a four times longer domain. The
SD simulation presented here is thus to be taken as a ‘‘proof of concept” of what the VIC–PFM method
can do. The resolution used is h/b = 0.01. The time step was Dt/t0 = 5 � 10�4, with t0 = b0/V0. The number
of particles reached about 14 million and the size of the grid was Lx/b = 12.5, Ly/b = 4 and Lz/b = 1.1 (thus
Nx = 1250, Ny = 400 and Nz = 110 for a total of 55 million grid points).

Compared to TD simulations, the computation has here to be carried on for a sufficiently long time for the
flow to reach its regime state (i.e., its statistical equilibrium). Indeed, the flow being initialized using a spatially
uniform wake, at least a complete flow through time, t = Lx/U1, is required to ‘‘evacuate” this initial condi-
tion. A visualization of the space-developing simulation showed that the flow had reached a well established
regime after about 1.6 flow through times. Once this regime state was attained, the flow was computed further,
to attain statistical convergence of the time averaged fields of interest at different x/b stations (not shown). The
complete simulation ran 104 time steps.

We see, in Fig. 19, the global spiraling motion of the wake vortices. The secondary vortex interacts with the
primary vortex before having performed a complete revolution around it. The interaction is initiated by a
medium wave instability that propagates on the secondary vortex. There is also some kind of vortex ‘‘mean-
dering” of the secondary vortex, seen when examining time sequences (not shown here). Fig. 20 provides
zooms of the flow in the mid wake and in the far wake: this also illustrates the good resolution quality of this
simulation. It shows how the secondary vortex partially reconnects with the primary one through a complex
spiraling motion. Due to this interaction, the primary vortex appears to ‘‘burst” into two or even three helical
vortices which then further ‘‘break down” into small-scales. This simulation, and its detailed analysis (not
shown), is part of the European project FAR-Wake.

5. Conclusions

We have presented a new approach, the VIC–PFM method, that efficiently combines a vortex-in-cell (VIC)
method and a parallel fast multipole (PFM) method. It allows to efficiently simulate unbounded or half-
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unbounded flows, by using the advantages of each method: the efficiency of grid Poisson solvers used in VIC
methods, and the implicit unbounded domain condition of PFM methods. As the open-domain boundary
conditions are obtained correctly using the PFM method, it avoids any iterative method and it permits to
use a computational domain (i.e., the VIC grid) as compact as the vorticity field, leading to much smaller
memory requirements.

For large problems, the method was further parallelized. The grid is then split into several subdomains,
each subgrid being allotted to one processor. The continuity between the subdomains is ensured by the
PFM method, that always has a global view of the entire vorticity field.

The VIC–PFM is able to simulate complex flows, also turbulent flows using Large-Eddy Simulation (LES)
approaches. Different SGS models were also implemented. An efficient relaxation scheme was also imple-
mented (following Cottet and Poncet [12]): it enforces that the vorticity field remains divergence free at all
times, which significantly enhances the accuracy and robustness of the method.

Various applications were presented and some compared with other methods and/or existing results. The
VIC–PFM method shows its efficiency and its ability to simulate complex and turbulent unbounded flows, as
shown by the simulation of a thin vortex ring at high Reynolds number. The VIC–PFM method was also
implemented with one periodic direction and was here illustrated on the simulation of a two vortex system
in ground effect. A space-developing simulation was also presented, for the longitudinal development, in
ground effect, of the vortex wake emitted by an elliptically loaded wing.
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